Cedrelopsis grevei induced hypotension and improved endothelial vasodilatation through an increase of Cu/Zn SOD protein expression.
نویسندگان
چکیده
This study was designed to investigate the cardiovascular consequences of oral administration of Cedrelopsis grevei (CG) in normotensive rats. Experiments were designed to investigate hemodynamic parameters in vivo as well as the consequences of CG treatment on the vasoconstriction response to norepinephrine and the vasorelaxant response to ACh ex vivo in isolated aortas and small mesenteric arteries (SMA). Treatment of male Wistar rats with 80 mg/kg CG for 4 wk induced a progressive decrease in systolic blood pressure. In the aorta, CG did not significantly alter the response to norepinephrine despite the participation of extraendothelial nitric oxide (NO)-induced hyporeactivity. In the SMA, contraction to norepinephrine was not modified by CG treatment even though it enhanced the participation of endothelial NO. Endothelium-dependent relaxation to ACh was increased in both the aorta and SMA from CG-treated rats. In the aorta from CG-treated rats, the mechanism involved superoxide dismutase (SOD)- and catalase-sensitive free radical production. The latter was associated with enhanced expression of Cu/Zn SOD and endothelial NO synthase. These results suggest that oral administration of CG produces a decrease in blood pressure in normotensive rats. This hemodynamic effect was associated with enhanced endothelium-dependent relaxation and an induction of Cu/Zn SOD and endothelial NO synthase expressions in the vessel wall. They also show subtle mechanisms that compensate for the increased participation of NO to maintain unchanged agonist-induced contractility. These data provide a pharmacological basis for the empirical use of CG against cardiovascular diseases.
منابع مشابه
Role of Cu,Zn-SOD in the synthesis of endogenous vasodilator hydrogen peroxide during reactive hyperemia in mouse mesenteric microcirculation in vivo.
We have recently demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor and that endothelial Cu/Zn-superoxide dismutase (SOD) plays an important role in the synthesis of endogenous H2O2 in both animals and humans. We examined whether SOD plays a role in the synthesis of endogenous H2O2 during in vivo reactive hyperemia (RH), an important ...
متن کاملExtracellular superoxide dismutase depletion in hypertension unmasks a new role for angiotensin II in regulating Cu,Zn-superoxide dismutase activity.
While studying the effects of 2 weeks of angiotensin II infusion in extracellular superoxide dismutase knockout (ecSOD / ) mice on increasing superoxide and promoting hypertension, Gongora et al1 made the surprising observation that NO production and its associated endothelium-dependent relaxation were actually improved by angiotensin II treatment in aorta from these mice without altering the e...
متن کاملPivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization.
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived H2O2 is an EDHF in mesenteric arteries of mice and humans and in porcine coronary microvessels. However, the mechanism for th...
متن کاملSuperoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors.
Several antioxidant enzymes, including copper, zinc-superoxide dismutase (Cu, Zn-SOD) and catalase, have been suggested to be protective against the proliferation of vascular smooth muscle cells exposed to oxidative stress. In the present study, we investigated effects of Cu, Zn-SOD and/or catalase on oxLDL-induced proliferation of, and intracellular signaling in, human aortic smooth muscle cel...
متن کاملPeroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production.
Recently, we demonstrated that the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands, either 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) or ciglitazone, increased endothelial nitric oxide (.NO) release without altering endothelial nitric oxide synthase (eNOS) expression (4). However, the precise molecular mechanisms of PPAR-gamma-stimulated endothelial.NO release remain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 2 شماره
صفحات -
تاریخ انتشار 2004